FCC SDoC TEST REPORT
Xiamen RGBlink Science & Technology Co., Ltd.
Meeting Streaming Solution
Test Model: RGB20X-POE-TLY
Additional Model No.: Please Refer To Page 7

Prepared for: Xiamen RGBlink Science & Technology Co., Ltd.
Address: Room 601A, No. 37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China

Prepared by: Shenzhen LCS Compliance Testing Laboratory Ltd.
Address: Room 101, 201, Building A and Room 301, Building C, Juij Industrial Park, Yabianxueziwei, Shajing Street, Bao’an District, Shenzhen, Guangdong, China

Tel: (+86)755-82591330
Fax: (+86)755-82591332
Web: www.LCS-cert.com
Mail: webmaster@LCS-cert.com

Date of receipt of test sample: December 12, 2022
Number of tested samples: 1
Samples number: A120922075
Date of Test: December 12, 2022 ~ December 15, 2022
Date of Report: December 16, 2022

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: Room 101, 201, Building A and Room 301, Building C, Juij Industrial Park, Yabianxueziwei, Shajing Street, Bao’an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity
FCC SDoC TEST REPORT

FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014

<table>
<thead>
<tr>
<th>Report Reference No.</th>
<th>: LCSA120922075E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Of Issue</td>
<td>December 16, 2022</td>
</tr>
<tr>
<td>Testing Laboratory Name</td>
<td>Shenzhen LCS Compliance Testing Laboratory Ltd.</td>
</tr>
<tr>
<td>Address</td>
<td>Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao’an District, Shenzhen, Guangdong, China</td>
</tr>
<tr>
<td>Testing Location/ Procedure</td>
<td>Full application of Harmonised standards</td>
</tr>
<tr>
<td></td>
<td>Partial application of Harmonised standards</td>
</tr>
<tr>
<td></td>
<td>Other standard testing method</td>
</tr>
<tr>
<td>Applicant's Name</td>
<td>Xiamen RGBlink Science & Technology Co., Ltd.</td>
</tr>
<tr>
<td>Address</td>
<td>Room 601A, No. 37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China</td>
</tr>
</tbody>
</table>

Test Specification

- **Standard** | FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014 |
- **Test Report Form No.** | LCSEMC-1.0 |
- **TRF Originator** | Shenzhen LCS Compliance Testing Laboratory Ltd. |
- **Master TRF** | Dated 2011-03 |

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description

- **Test Model** | RGB20X-POE-TLY |
- **Trade Mark** | RGBlink |
- **Ratings** | Please Refer to Page 7 |
- **Result** | Positive |

Compiled by: Cindy Nie

Supervised by: Baron Wen

Approved by: Gavin Liang

Cindy Nie/ File administrators

Baron Wen/ Technique principal

Gavin Liang/ Manager
<table>
<thead>
<tr>
<th>Test Report No.</th>
<th>LCSA120922075E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of issue</td>
<td>December 16, 2022</td>
</tr>
</tbody>
</table>

Test Model : RGB20X-POE-TLY
EUT : Meeting Streaming Solution

Applicant
Name : Xiamen RGBlink Science & Technology Co., Ltd.
Address : Room 601A, No. 37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China

Manufacturer
Name : Xiamen RGBlink Science & Technology Co., Ltd.
Address : Room 601A, No. 37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China

Factory
Name : Xiamen RGBlink Science & Technology Co., Ltd.
Address : 5th floor, 205 Xinfeng Road, Huli District, Xiamen city, Fujian Province

Test Result according to the standards on page 6: **Positive**

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Revision content</th>
<th>Revised By</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>December 16, 2022</td>
<td>Initial Issue</td>
<td>/</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Test Report Description

<table>
<thead>
<tr>
<th>1. SUMMARY OF STANDARDS AND RESULTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Description of Standards and Results</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. GENERAL INFORMATION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Description of Device (EUT)</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Support equipment List</td>
<td>8</td>
</tr>
<tr>
<td>2.3. Description of Test Facility</td>
<td>8</td>
</tr>
<tr>
<td>2.4. Statement of the Measurement Uncertainty</td>
<td>8</td>
</tr>
<tr>
<td>2.5. Measurement Uncertainty</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. TEST RESULTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT</td>
<td>10</td>
</tr>
<tr>
<td>3.2. Radiated emission Measurement</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. PHOTOGRAPH</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT</th>
<th>Page</th>
</tr>
</thead>
</table>

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao’an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity
1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

<table>
<thead>
<tr>
<th>Description of Test Item</th>
<th>Standard</th>
<th>Limits</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted disturbance at mains terminals</td>
<td>FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014</td>
<td>---</td>
<td>PASS</td>
</tr>
<tr>
<td>Radiated disturbance</td>
<td>FCC 47 CFR Part 15 Subpart B, Class B(SDoC), ANSI C63.4 -2014</td>
<td>---</td>
<td>PASS</td>
</tr>
</tbody>
</table>

N/A is an abbreviation for Not Applicable.

Test mode:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Full Load</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***Note: All test modes were tested, but we only recorded the worst case in this report.
2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT: Meeting Streaming Solution

Trade Mark: RGBlink

Test Model: RGB20X-POE-TLY

Model Declaration: PCB board, structure and internal of these model(s) are the same, So no additional models were tested

Power Supply: For Meeting Streaming Solution:
Input: 12V==1.5A

Highest internal frequency: $F_x \leq 108 \text{MHz}$
Highest internal frequency (Fx)

<table>
<thead>
<tr>
<th>Fx ≤ 1.705 MHz</th>
<th>Highest measured frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.705 MHz < Fx ≤ 108 MHz</td>
<td>30 MHz</td>
</tr>
<tr>
<td>108 MHz < Fx ≤ 500 MHz</td>
<td>1 GHz</td>
</tr>
<tr>
<td>500 MHz < Fx ≤ 1000 MHz</td>
<td>2 GHz</td>
</tr>
<tr>
<td>Fx > 1 GHz</td>
<td>5 GHz</td>
</tr>
<tr>
<td></td>
<td>5 × Fx up to a maximum of 40 GHz</td>
</tr>
</tbody>
</table>

2.2. Support equipment List

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturers</th>
<th>M/N</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

2.3. Description of Test Facility

Site Description

EMC Lab.

- NVLAP Accreditation Code is 600167-0.
- FCC Designation Number is CN5024.
- CAB identifier is CN0071.
- CNAS Registration Number is L4595.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.
2.5. Measurement Uncertainty

<table>
<thead>
<tr>
<th>Test</th>
<th>Parameters</th>
<th>Expanded Uncertainty (U_{lab})</th>
<th>Expanded Uncertainty (U_{cispr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted Emission</td>
<td>Level accuracy (9kHz to 150kHz)</td>
<td>± 2.63 dB</td>
<td>± 3.8 dB</td>
</tr>
<tr>
<td></td>
<td>(150kHz to 30MHz)</td>
<td>± 2.35 dB</td>
<td>± 3.4 dB</td>
</tr>
<tr>
<td>Radiated Emission</td>
<td>Level accuracy (9kHz to 30MHz)</td>
<td>± 3.68 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>Radiated Emission</td>
<td>Level accuracy (30MHz to 1000MHz)</td>
<td>± 3.48 dB</td>
<td>± 5.3 dB</td>
</tr>
<tr>
<td>Radiated Emission</td>
<td>Level accuracy (above 1000MHz)</td>
<td>± 3.90 dB</td>
<td>± 5.2 dB</td>
</tr>
</tbody>
</table>

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of \(k=2 \), which for a normal distribution corresponds to a coverage probability of approximately 95%.
3. TEST RESULTS

3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Cal Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EMI Test Software</td>
<td>Farad</td>
<td>EZ</td>
<td>/</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>EMI Test Receiver</td>
<td>R&S</td>
<td>ESR3</td>
<td>102312</td>
<td>2022-02-18</td>
<td>2023-02-17</td>
</tr>
<tr>
<td>3</td>
<td>Artificial Mains</td>
<td>R&S</td>
<td>ENV216</td>
<td>101288</td>
<td>2022-06-16</td>
<td>2023-06-15</td>
</tr>
<tr>
<td>4</td>
<td>Pulse Limiter</td>
<td>R&S</td>
<td>ESH3-Z2</td>
<td>102750-NB</td>
<td>2022-08-17</td>
<td>2023-08-16</td>
</tr>
</tbody>
</table>

3.1.2. Block Diagram of Test Setup

![Block Diagram of Test Setup]

3.1.3. Test Standard

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Limit (dBµV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quasi-peak Level</td>
</tr>
<tr>
<td>0.15</td>
<td>79</td>
</tr>
<tr>
<td>0.50</td>
<td>73</td>
</tr>
</tbody>
</table>

NOTE1 - The lower limit shall apply at the transition frequencies.
NOTE2 - The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.4. EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.
3.1.5. Operating Condition of EUT

3.1.5.1. Setup the EUT as shown on Section 3.1.2
3.1.5.2. Turn on the power of all equipments.
3.1.5.3. Let the EUT work in measuring Mode 1 and measure it.

3.1.6. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

3.1.7. Test Results

PASS.

The test result please refer to the next page.
<table>
<thead>
<tr>
<th>Test Model</th>
<th>RGB20X-POE-TLY</th>
<th>Test Mode</th>
<th>Mode 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Conditions</td>
<td>24.5℃, 53.1% RH</td>
<td>Test Engineer</td>
<td>Hy Luo</td>
</tr>
<tr>
<td>Pol</td>
<td>Line</td>
<td>Test Voltage</td>
<td>AC 120V/60Hz</td>
</tr>
</tbody>
</table>

![Graph showing RF measurements](image)

<table>
<thead>
<tr>
<th>No. Mk.</th>
<th>Freq.</th>
<th>Reading Level</th>
<th>Correct Factor</th>
<th>Measurement Limit</th>
<th>Margin</th>
<th>Detector</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>dBµV</td>
<td>dB</td>
<td>dBµV</td>
<td>dB</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.1566</td>
<td>27.14</td>
<td>19.63</td>
<td>46.77</td>
<td>79.00</td>
<td>-32.23</td>
<td>QP</td>
</tr>
<tr>
<td>2</td>
<td>0.1573</td>
<td>10.26</td>
<td>19.63</td>
<td>29.89</td>
<td>66.00</td>
<td>-36.11</td>
<td>AVG</td>
</tr>
<tr>
<td>3</td>
<td>0.4156</td>
<td>24.67</td>
<td>19.63</td>
<td>44.30</td>
<td>79.00</td>
<td>-34.70</td>
<td>QP</td>
</tr>
<tr>
<td>4 *</td>
<td>0.4201</td>
<td>16.45</td>
<td>19.63</td>
<td>36.08</td>
<td>66.00</td>
<td>-29.92</td>
<td>AVG</td>
</tr>
<tr>
<td>5</td>
<td>1.3336</td>
<td>15.86</td>
<td>19.66</td>
<td>35.32</td>
<td>73.00</td>
<td>-37.88</td>
<td>QP</td>
</tr>
<tr>
<td>6</td>
<td>1.3471</td>
<td>4.23</td>
<td>19.66</td>
<td>23.89</td>
<td>60.00</td>
<td>-36.11</td>
<td>AVG</td>
</tr>
<tr>
<td>7</td>
<td>4.6681</td>
<td>16.89</td>
<td>19.70</td>
<td>36.39</td>
<td>73.00</td>
<td>-38.61</td>
<td>QP</td>
</tr>
<tr>
<td>8</td>
<td>4.6906</td>
<td>4.82</td>
<td>19.70</td>
<td>24.52</td>
<td>60.00</td>
<td>-35.48</td>
<td>AVG</td>
</tr>
<tr>
<td>9</td>
<td>9.1411</td>
<td>20.77</td>
<td>19.82</td>
<td>40.59</td>
<td>73.00</td>
<td>-32.41</td>
<td>QP</td>
</tr>
<tr>
<td>10</td>
<td>9.3076</td>
<td>6.79</td>
<td>19.83</td>
<td>26.62</td>
<td>60.00</td>
<td>-33.38</td>
<td>AVG</td>
</tr>
<tr>
<td>11</td>
<td>20.4721</td>
<td>21.48</td>
<td>20.18</td>
<td>41.66</td>
<td>73.00</td>
<td>-31.34</td>
<td>QP</td>
</tr>
<tr>
<td>12</td>
<td>20.6701</td>
<td>4.91</td>
<td>20.17</td>
<td>25.08</td>
<td>60.00</td>
<td>-34.92</td>
<td>AVG</td>
</tr>
</tbody>
</table>
Test Model | RGB20X-POE-TLY
Environmental Conditions | 24.5°C, 53.1% RH
Test Mode | Mode 1
Test Engineer | Hy Luo
Pol | Neutral
Test Voltage | AC 120V/60Hz

Environmental Conditions
- Temperature: 24.5°C
- Humidity: 53.1% RH

Test Voltage
- AC 120V/60Hz

Note:
Pre-scan all modes, thus record the worse case mode result in this report.
3.2. Radiated emission Measurement

3.2.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Cal Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EMI Test Software</td>
<td>AUDIX</td>
<td>E3</td>
<td>/</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>By-log Antenna</td>
<td>SCHWARZBEC</td>
<td>VULB9163</td>
<td>9163-470</td>
<td>2021-09-12</td>
<td>2024-09-11</td>
</tr>
<tr>
<td>3</td>
<td>Horn Antenna</td>
<td>SCHWARZBEC</td>
<td>BBHA 9120D</td>
<td>9120D-1925</td>
<td>2021-09-05</td>
<td>2024-09-04</td>
</tr>
<tr>
<td>4</td>
<td>EMI Test Receiver</td>
<td>R&S</td>
<td>ESR3</td>
<td>102311</td>
<td>2022-08-17</td>
<td>2023-08-16</td>
</tr>
<tr>
<td>5</td>
<td>Broadband Preamplifier</td>
<td>/</td>
<td>BP-01M18G</td>
<td>P190501</td>
<td>2022-06-16</td>
<td>2023-06-15</td>
</tr>
</tbody>
</table>

3.2.2. Block Diagram of Test Setup

![Block Diagram of Test Setup](image_url)
3.2.3. Radiated Emission Limit

Limits for Radiated Disturbance Below 1 GHz

<table>
<thead>
<tr>
<th>FREQUENCY MHz</th>
<th>DISTANCE Meters</th>
<th>FIELD STRENGTHS LIMIT µV/m</th>
<th>dB(µV)/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 ~ 88</td>
<td>3</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>88 ~ 216</td>
<td>3</td>
<td>150</td>
<td>53.5</td>
</tr>
<tr>
<td>216 ~ 960</td>
<td>3</td>
<td>200</td>
<td>56</td>
</tr>
<tr>
<td>960 ~ 1000</td>
<td>3</td>
<td>500</td>
<td>64</td>
</tr>
</tbody>
</table>

Remark:
1. Emission level (dB)µV = 20 log Emission level µV/m
2. The smaller limit shall apply at the cross point between two frequency bands.
3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Limits for Radiated Emission Above 1 GHz

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Distance (Meters)</th>
<th>Peak Limit (dBµV/m)</th>
<th>Average Limit (dBµV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 1000</td>
<td>3</td>
<td>74</td>
<td>54</td>
</tr>
</tbody>
</table>

Note: The lower limit applies at the transition frequency.

3.2.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.2.5. Operating Condition of EUT

3.2.5.1. Setup the EUT as shown in Section 3.2.2.
3.2.5.2. Let the EUT work in test Mode 1 and measure it.

3.2.6. Test Procedure

EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.
3.2.7. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver:

<table>
<thead>
<tr>
<th>Receiver Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation</td>
<td>Auto</td>
</tr>
<tr>
<td>Start ~ Stop Frequency</td>
<td>9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG</td>
</tr>
<tr>
<td></td>
<td>150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG</td>
</tr>
<tr>
<td></td>
<td>30MHz~1000MHz / RB/VB 120kHz/1MHz for QP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectrum Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation</td>
<td>Auto</td>
</tr>
<tr>
<td>Start Frequency</td>
<td>1000 MHz</td>
</tr>
<tr>
<td>Stop Frequency</td>
<td>10th carrier harmonic</td>
</tr>
<tr>
<td>RB / VB (Emission in restricted band)</td>
<td>1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average</td>
</tr>
<tr>
<td>RB / VB (Emission in non-restricted band)</td>
<td>1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average</td>
</tr>
</tbody>
</table>

The frequency range from 30MHz to 1000MHz and above 1000MHz is checked.

3.2.8. Radiated Emission Noise Measurement Result

PASS.

The scanning waveforms please refer to the next page.
<table>
<thead>
<tr>
<th>Test Model</th>
<th>RGB20X-POE-TLY</th>
<th>Test Mode</th>
<th>Mode 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Conditions</td>
<td>22.3°C, 53.2% RH</td>
<td>Detector Function</td>
<td>Quasi-peak</td>
</tr>
<tr>
<td>Pol</td>
<td>Vertical</td>
<td>Distance</td>
<td>3m</td>
</tr>
<tr>
<td>Test Engineer</td>
<td>Hy Luo</td>
<td>Test Voltage</td>
<td>AC 120V/60Hz</td>
</tr>
</tbody>
</table>

![Graph](image)

Freq Reading Cable Fac Antfac Measured Limit Over Remark

<table>
<thead>
<tr>
<th>MHz</th>
<th>dBuV</th>
<th>dS</th>
<th>dB/m</th>
<th>dBuV/m</th>
<th>dBuV/m</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.59</td>
<td>14.62</td>
<td>0.64</td>
<td>12.53</td>
<td>27.79</td>
<td>50.00</td>
<td>-22.21</td>
</tr>
<tr>
<td>148.44</td>
<td>29.01</td>
<td>1.03</td>
<td>8.67</td>
<td>33.71</td>
<td>53.50</td>
<td>-14.79</td>
</tr>
<tr>
<td>282.59</td>
<td>23.71</td>
<td>1.30</td>
<td>13.36</td>
<td>38.37</td>
<td>56.00</td>
<td>-17.63</td>
</tr>
<tr>
<td>425.03</td>
<td>23.82</td>
<td>1.43</td>
<td>15.60</td>
<td>40.85</td>
<td>56.00</td>
<td>-15.15</td>
</tr>
<tr>
<td>595.13</td>
<td>30.10</td>
<td>1.50</td>
<td>19.15</td>
<td>50.75</td>
<td>56.00</td>
<td>-5.25</td>
</tr>
<tr>
<td>744.87</td>
<td>21.57</td>
<td>1.85</td>
<td>19.60</td>
<td>43.06</td>
<td>56.00</td>
<td>-12.94</td>
</tr>
</tbody>
</table>

Note:
1. All readings are Quasi-peak values.
2. Measured = Reading + Antenna Factor + Cable Loss
3. The emission that are 20dB below the official limit are not reported.
Test Model | RGB20X-POE-TLY | **Test Mode** | Mode 1
---|---|---|---
Environmental Conditions | 22.3 °C, 53.2% RH | **Detector Function** | Quasi-peak
Pol | Horizontal | **Distance** | 3m
Test Engineer | Hy Luo | **Test Voltage** | AC 120V/60Hz

Environmental Conditions
- Temperature: 22.3 °C
- Humidity: 53.2% RH

Detector Function
- Quasi-peak

Test Engineer
- Hy Luo

Test Voltage
- AC 120V/60Hz

Note:
- Pre-scan all modes, thus record worse case mode result in this report.

Remark:
- For above 1000MHz, because the emission is too low to be reported.
4. PHOTOGRAPH

Photo of Power Line Conducted Measurement

Photo of Radiated emission Measurement
5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2
Fig. 7

Fig. 8
--THE END OF TEST REPORT--