

EMC TEST REPORT

For

Xiamen RGBlink Science & Technology Co., Ltd.

PTZ Camera

Test Model: RGB20X-PTZ-WH

Additional Model No.: Please Refer to Page 9

Prepared for Address	Xiamen RGBlink Science & Technology Co., Ltd. Room 601A, No.37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China
Prepared by	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel	(+86)755-82591330
Fax	(+86)755-82591332
Web	www.LCS-cert.com
Mail	webmaster@LCS-cert.com
Date of receipt of test sample	October 29, 2021
Number of tested samples	: 1
Serial number	Prototype
Date of Test	October 29, 2021 ~ November 02, 2021
Date of Report	May 30, 2022

	EMC TEST REPORT	
	EN 55032:2015+A11:2020	
Electromagnetic compa	Itibility of multimedia equipment - Emission Requirements EN 55035:2017+A11: 2020	
Electromagnetic compa	atibility of multimedia equipment – Immunity requirements	
Report Reference No	: LCSA052022080E	
Date of Issue	: May 30, 2022	
Testing Laboratory Name	: Shenzhen LCS Compliance Testing Laboratory Ltd.	
Address	: Room 101, 201, Building A and Room 301, Building C, Juji	
	Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District,	
Testing Leastion (Dressdure	Shenzhen, Guangdong, China	
Testing Location/ Procedure	 Full application of Harmonised standards ■ Partial application of Harmonised standards □ 	
	Other standard testing method	
Applicant's Name	: Xiamen RGBlink Science & Technology Co., Ltd.	
Address	: Room 601A, No.37-3 Banshang community, Building 3, Xinke	
	Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen,	
	China	
Test Specification		
Standard	[:] EN 55032:2015+A11:2020	
	EN 55035:2017+A11: 2020	
	EN IEC 61000-3-2:2019	
	EN 61000-3-3: 2013+A1:2019	
Test Report Form No.	: LCSEMC-1.0	
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.	
Master TRF	: Dated 2011-03 sting Laboratory Ltd. All rights reserved.	
This publication may be reproduce Shenzhen LCS Compliance Test source of the material. Shenzhen	ed in whole or in part for non-commercial purposes as long as the ing Laboratory Ltd. is acknowledged as copyright owner and LCS Compliance Testing Laboratory Ltd. takes no responsibility or damages resulting from the reader's interpretation of the	
Test Item Description	: PTZ Camera	
Trade Mark	: RGBlink	
Test Model	: RGB20X-PTZ-WH	
Ratings	: Please Refer to Page 9	
Result	: Positive	
Compiled by:	Supervised by: Approved by:	
Cindy Nie	Baron Wen Gains Riang	

Cindy Nie/ File administrators

Baron Wen/ Technique principal

0

12 S

Gavin Liang/ Manager

EMC -- TEST REPORT

Test Report No. : LCSA052022080E

May 30, 2022

Date of issue

Test Model	: RGB20X-PTZ-WH
EUT	: PTZ Camera
Applicant	: Xiamen RGBlink Science & Technology Co., Ltd.
Address	 Room 601A, No.37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China
Telephone	:/
Fax	:/
Manufacturer	: Xiamen RGBlink Science & Technology Co., Ltd.
Address	: Room 601A, No.37-3 Banshang community, Building 3, Xinke Plaza, Torch Hi-Tech Industrial Development Zone, Xiamen, China
Telephone	:/
Fax	:/
Factory	: Xiamen RGBlink Science & Technology Co., Ltd.
Address	 5th floor, 205 Xinfeng Road, Huli District, Xiamen city, Fujian Province
Telephone	:/
Fax	:/

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revision Content	Revised By
000	May 30, 2022	Initial Issue	/

Remark:

Original Test Report "LCS211029013AE" dated November 02, 2021. Now Modify the Applicnt address and models.

This co-license test report is based on the test raw-data of original test report, after construction/information review and verification, no additional tests were considered necessary.

TABLE OF CONTENTS

Test Report Description	Page
1. TEST STANDARDS	
2.SUMMARY OF STANDARDS AND RESULTS	7
2.1. DESCRIPTION OF STANDARDS AND RESULTS 2.2. DESCRIPTION OF PERFORMANCE CRITERIA	
3. GENERAL INFORMATION	9
 3.1. DESCRIPTION OF DEVICE (EUT) 3.2. SUPPORT EQUIPMENT LIST 3.3. DESCRIPTION OF TEST FACILITY 3.4. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4. MEASURING DEVICES AND TEST EQUIPMENT	
5. TEST RESULTS	
 5.1. POWER LINE CONDUCTED EMISSION MEASUREMENT 5.2. RADIATED EMISSION MEASUREMENT 5.3. HARMONIC CURRENT EMISSION MEASUREMENT	13 15 15 17 18 19 21 23 25 25 27 29
ANNEX A	
ANNEX B	
ANNEX C	

1. TEST STANDARDS

The tests were performed according to following standards:

<u>EN 55032:2015+A11:2020</u> Electromagnetic compatibility of multimedia equipment - Emission Requirements

EN 55035:2017+A11: 2020 Electromagnetic compatibility of multimedia equipment – Immunity requirements

<u>EN IEC 61000-3-2:2019</u> Electromagnetic compatibility (EMC) -- Part 3-2: Limits - Limits for harmonic current emissions (equipment input current up to and including 16 A per phase) <u>EN 61000-3-3: 2013+A1:2019</u> Electromagnetic compatibility (EMC) -- Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current \leq 16 A per phase and not subject to conditional connection

2.SUMMARY OF STANDARDS AND RESULTS

2.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

Emission (EN 55032:2015+A11:2020)			
Description of Test Item	Standard	Limits	Results
Conducted disturbance at mains terminals	EN 55032:2015+A11:2020	Class B	PASS
Conducted disturbance at telecommunication port	EN 55032:2015+A11:2020	Class B	N/A
Radiated disturbance	EN 55032:2015+A11:2020	Class B	PASS
Harmonic current emissions	EN IEC 61000-3-2:2019	Class A	PASS
Voltage fluctuations & flicker	EN 61000-3-3: 2013+A1:2019		PASS
Im	munity (EN 55035:2017+A11:	2020)	
Description of Test Item	Basic Standard	Performance Criteria	Results
Electrostatic discharge (ESD)	EN 61000-4-2: 2009	В	PASS
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3: 2006+A2: 2010	А	PASS
Electrical fast transient (EFT)	EN 61000-4-4: 2012	В	PASS
Surge (Input a.c. power ports)	EN 61000-4-5: 2014+A1: 2017	В	PASS
Surge (Telecommunication ports)	EN 01000-4-0. 2014+A1. 2017	В	N/A
Radio-frequency, Continuous conducted disturbance	EN 61000-4-6: 2014+A1:2015	А	PASS
Power frequency magnetic field	EN 61000-4-8: 2010	А	PASS
Voltage dips, >95% reduction		В	PASS
Voltage dips, 30% reduction	EN IEC 61000-4-11:2020+AC: 2020	С	PASS
Voltage interruptions		С	PASS
***Note: N/A is an abbreviation for Not Applicable.			

Test mode:		
Mode 1	Working	Record
***Note: All test modes were tes	ted, but we only recorded the worst ca	se in this report.

2.2. Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;

2.2.1. Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

2.2.2. Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

2.2.3. Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

3. GENERAL INFORMATION

3.1. Description of Device (EUT)			
EUT	:	PTZ Camera	
Trade Mark	:	RGBlink	
Test Model	:	RGB20X-PTZ-WH	
Additional Model No.	:	RGB12X, RGB20X, RGB30X, RGB3X, RGB10X, RGBCTL, RGBABS, RGBMIC, RGBBKT, TAO, mini, ASK, X1Gpro, GX4pro, FLEX MINI, X8, Q16pro, D8	
Model Declaration	:	PCB board, structure and internal of these model(s) are the same,So no additional models were tested	
Power Supply	:	For Power Supply: Input: 100-240V~, 50/60Hz, 0.8A Output: 12V-2A, 24W For PTZ Camera: 12V-1.5A, 18W	

Highest internal frequency : Fx≤108MHz

Highest internal frequency (Fx)	Highest measured frequency			
Fx ≤ 108 MHz	1 GHz			
108 MHz < Fx ≤ 500 MHz	2 GHz			
500 MHz < Fx ≤ 1 GHz	5 GHz			
Fx > 1 GHz	5 × Fx up to a maximum of 6 GHz			
NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.				
NOTE 2 Fx is defined in EN 55032 Section 3.1.19.				
Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz				

3.2. Support Equipment List

Name	Manufacturers	M/N	S/N

3.3. Description of Test Facility

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

3.4. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Parameters	Expanded uncertainty (U _{lab})	Expanded uncertainty (U _{cispr})
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Power Disturbance	Level accuracy (30MHz to 300MHz)	± 2.90dB	\pm 4.5 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	\pm 3.60 dB	\pm 3.3 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	\pm 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	\pm 3.48 dB	\pm 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	\pm 3.90 dB	± 5.2 dB
Mains Harmonic	Voltage	± 0.510%	N/A
Voltage Fluctuations & Flicker	Voltage	± 0.510%	N/A
EMF	/	± 21.59%	N/A

3.5. Measurement Uncertainty

1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Γ

4. MEASURING DEVICES AND TEST EQUIPMENT

LINE	LINE CONDUCTED EMISSION							
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A		
2	EMI Test Receiver	R&S	ESR3	102312	2021-03-16	2022-03-15		
3	Artificial Mains	R&S	ENV216	101119	2021-06-21	2022-06-20		
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-003 2	2021-06-21	2022-06-20		
5	Impedance Stabilization Network	TESEQ	ISN T800	45130	2020-12-02	2021-12-01		

RADIATED DISTURBANCE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
3	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
4	EMI Test Receiver	R&S	ESR3	102311	2021-06-21	2022-06-20
5	Broadband Preamplifier	/	BP-01M18G	P190501	2021-06-21	2022-06-20

VOLTA	VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	Power Analyzer Test System	Voltech	PM6000	200006700523	2021-06-21	2022-06-20	

ELEC	ELECTROSTATIC DISCHARGE						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	ESD Simulator	SCHLODER	SESD 230	604035	2021-07-20	2022-07-19	

RF ELECTROMAGNETIC FIELD)

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2020-11-17	2021-11-16
2	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
3	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
4	Stacked Broadband Log Periodic Antenna	SCHWARZBEC K	STLP 9128	9128ES-145	NCR	NCR
5	Stacked Mikrowellen LogPer Antenna	SCHWARZBEC K	STLP 9149	9149-484	NCR	NCR
6	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2021-03-25	2022-03-24

Note: NCR means no calibration requirement

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

ELEC	ELECTRICAL FAST TRANSIENT IMMUNITY						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	Immunity Simulative Generator	EM TEST	UCS500-M4	0101-34	2021-06-21	2022-06-20	

SUR	SURGES, LINE TO LINE AND LINE TO GROUND						
Item Equipment Manufacturer Model No. Serial No. Cal Date Due Dat						Due Date	
1	Immunity Simulative Generator	EM TEST	UCS500-M4	0101-34	2021-06-21	2022-06-20	

RF C	RF COMMON MODE						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2021-06-21	2022-06-20	
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2021-06-21	2022-06-20	
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2021-06-21	2022-06-20	

MAG	MAGNETIC FIELD SUSCEPTIBILITY TEST						
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	Power frequency mag-field generator System	EVERFINE	EMS61000-8K	906003	2021-06-21	2022-06-20	

VOL	VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST						
Item	Item Equipment Manufacturer Model No. Serial No. Cal Date Due Date						
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2021-06-21	2022-06-20	

5. TEST RESULTS

5.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

5.1.1. Block Diagram of Test Setup

5.1.2. Test Standard

EN 55032:2015+A11:2020 Class B

Power Line Conducted Emission Limits (Class B)						
Frequency	Limit (dBμV)				
(MHz)	Quasi-peak Level	Average Level				
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *				
0.50 ~ 5.00	56.0	46.0				
5.00 ~ 30.00 60.0 50.0						
NOTE1-The lower limit shall a	apply at the transition frequencies					

NOTE1-The lower limit shall apply at the transition frequencies. NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.1.3. EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the EN 55032 requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.1.4. Operating Condition of EUT

- 5.1.4.1.Setup the EUT as shown on Section 5.1.1
- 5.1.4.2. Turn on the power of all equipments.
- 5.1.4.3.Let the EUT work in measuring mode(1) and measure it.

5.1.5. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided 50-ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.

The bandwidth of the field strength meter is set at 9kHz in 150kHz~30MHz. The frequency range from 150kHz to 30MHz is investigated.

5.1.6. Test Results

PASS.

IBC IL TE

5.2. RADIATED EMISSION MEASUREMENT

5.2.1. Block Diagram of Test Setup

Below 1GHz

Above 1GHz

5.2.2. Test Standard

EN 55032:2015+A11:2020 Class B

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Limits for Radiated Emission Below 1GHz							
Frequency Distance Field Strengths Limit							
(MHz) (Meters) (dBµV/m)							
30 ~ 230 3 40							
230 ~ 1000	3	47					
 ***Note: (1) The smaller limit shall apply at the combination point between two frequency bands. (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT. 							

Limits for Radiated Emission Above 1GHz			
Frequency	Distance	Peak Limit	Average Limit
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)
1000 ~ 3000	3	70	50
3000 ~ 6000	3	74	54
***Note: The lower limit applies at the transition frequency.			

5.2.3. EUT Configuration on Test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission measurement.

5.2.4. Operating Condition of EUT

5.2.4.1.Turn on the power.

5.2.4.2.Let the EUT work in the test mode(1) and measure it.

5.2.5. Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the EMI test receiver is set at RBW/VBW=120kHz/300kHz.and the frequency range from 30MHz to 1000MHz is checked.

The bandwidth of the Spectrum analyzer is set at RBW/VBW=1MHz/3MHz and the frequency range from 1GHz to the frequency which about 5th carrier harmonic or 6GHz is checked.

5.2.6. Test Results

PASS.

5.3. HARMONIC CURRENT EMISSION MEASUREMENT

5.3.1. Block Diagram of Test Setup

5.3.2. Test Standard

EN IEC 61000-3-2:2019

5.3.3. Operating Condition of EUT

Same as Section 5.2.4, except the test setup replaced as Section 5.3.1.

5.3.4. Test Results

5.4. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

5.4.1. Block Diagram of Test Setup

Page 18 of 52

5.4.2. Test Standard

EN 61000-3-3: 2013+A1:2019

5.4.3. Operating Condition of EUT

Same as Section 5.2.4, except the test setup replaced as Section 5.4.1.

5.4.4. Test Results

PASS.

5.5. ELECTROSTATIC DISCHARGE IMMUNITY TEST

5.5.1. Block Diagram of Test Setup

5.5.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-2: 2009, Severity Level: 3 / Air Discharge: ±8KV, Level: 2 / Contact Discharge: ±4KV)

5.5.3. Severity Levels and Performance Criterion

			_
	Test Voltage	Test Voltage	
Level	Contact Discharge (KV)	Air Discharge (KV)	
1	±2	±2	
2	±4	±4 🎽	TESTING
3	±6	±8	
4	±8	±15	
X	Special	Special	4000

5.5.3.1. Severity level

5.5.3.2. Performance Criterion Performance Criterion: B

5.5.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.5.1.

5.5.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 5.1.4. Except the test set up replaced by Section 5.5.1.

5.5.6. Test Procedure

5.2.6.1. Air Discharge

This test is done on a non-conductive surfaces. The round discharge tip of the Electrostatic Discharge simulator shall be approached as fast as possible then to touch the EUT. After each discharge, the simulator shall be removed from the EUT. The simulator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed

5.2.6.2. Contact Discharge

All the procedure shall be same as air discharge, except using the acute discharge tip. The top end of the Electrostatic Discharge simulator is touch the EUT all the time when the simulator is re-triggered for a new single discharge and repeated 10 times for each pre-selected test point.

5.2.6.3. Indirect Discharge For Horizontal Coupling Plane

The vertical coupling plane(VCP) is placed 0.1m away from EUT. The top end of Electrostatic Discharge simulator should aim at the center of one border of the VCP for at least 25 times discharge.

5.2.6.4. Indirect Discharge For Vertical Coupling Plane

The top end of Electrostatic Discharge simulator should place at the point 0.1m away from EUT on the horizontal coupling plane(HCP). At least 25 times discharge should be done for every pre-selected point around EUT.

Record any performance degradation of the EUT during the test and judge the test result according to ce criterion.

5.5.7. Test Results

PASS.

Refer to attached Annex B.5

5.6. RF FIELD STRENGTH SUSCEPTIBILITY TEST

5.6.1. Block Diagram of Test Setup

5.6.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-3: 2006+A2: 2010 Severity Level: 2, 3V/m)

5.6.3. Severity Levels and Performance Criterion

5.6.3.1. Severity level

Level	Field Strength (V/m)
1	1
2	3
3	10
X	1

5.6.3.2. Performance Criterion Performance Criterion: A

5.6.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.6.1.

5.6.5. Operating Condition of EUT

Same as radiated emission measurement, which is listed in Section 5.2..4, except the test setup replaced as Section 5.6.1.

5.6.6. Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD Recording is used to monitor its screen. All the scanning conditions are as following:

Condition of Test	Remark
Fielded Strength	3 V/m (Severity Level 2)
Radiated Signal	Unmodulated
Test Frequency Range (swept test)	80-1000MHz
Test Frequency (spot test)	1800MHz, 2600MHz, 3500MHz, 5000MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	3 Sec.

5.6.7. Test Results

PASS.

Refer to attached Annex B.6

5.7. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

5.7.1. Block Diagram of Test Setup

5.7.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-4: 2012, Severity Level, Level 2: 1KV)

5.7.3. Severity Levels and Performance Criterion

5.7.3.1.	Severity	level
0.1.0.1.	0010110	10101

Open Circuit Output Test Voltage ±10%		
Level	On Power Supply Lines	On I/O (Input/Output) Signal
		data and control lines
1	0.5 KV	0.25 KV
2	1 KV	0.5 KV
3	2 KV	1 KV
4	4 KV	2 KV
Х	Special	Special

5.7.3.2. Performance Criterion

Performance Criterion: B

5.7.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.7.1.

5.7.5. Operating Condition of EUT

- 5.7.5.1. Setup the EUT as shown in Section 5.7.1.
- 5.7.5.2. Turn on the power of all equipments.
- 5.7.5.3. Let the EUT work in test mode(1) and measure it.

5.7.6. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

5.7.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 mins.

5.7.6.2. For signal lines and control lines ports: It's unnecessary to test.

5.7.6.3. For DC output line ports: It's unnecessary to test.

5.7.7. Test Results

PASS.

5.8. SURGE IMMUNITY TEST

5.8.1. Block Diagram of Test Setup

5.8.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-5: 2014+A1: 2017, Severity Level: Line to Line: Level 2, 1.0KV, Line to Earth: Level 3, 2.0KV)

5.8.3. Severity Levels and Performance Criterion

5.8.3.1. Severity level		
Severity Level	Open-Circuit Test Voltage (KV)	
1	0.5	
2	1.0	
3	2.0	ESTING
4	4.0	C
*	Special	- 19

5.8.3.2. Performance Criterion Performance Criterion: B

5.8.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.8.1.

5.8.5. Operating Condition of EUT

- 5.8.5.1. Setup the EUT as shown in Section 5.8.1.
- 5.8.5.1.Turn on the power of all equipments.
- 5.8.5.1.Let the EUT work in test mode (1) and measure it.

5.8.6. Test Procedure

5.8.6.1. Set up the EUT and test generator as shown on Section 5.8.1.

5.8.6.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.

5.8.6.3. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.

5.8.6.4. Different phase angles are done individually.

5.8.6.5. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

5.8.7. Test Results

PASS.

5.9. INJECTED CURRENTS SUSCEPTIBILITY TEST

5.9.1. Block Diagram of Test Setup

5.9.2. Test Standard

EN 55035:2017+A11: 2020(EN 61000-4-6: 2014+A1:2015, Severity Level: Level 2, (0.15MHz ~ 80MHz))

5.9.3. Severity Levels and Performance Criterion

Level	Field Strength (V)	
1	1	
2	3	
3	10	
Х	Special	

5.9.3.2. Performance Criterion Performance Criterion: A

5.9.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.9.1.

5.9.5. Operating Condition of EUT

- 5.9.5.1. Setup the EUT as shown in Section 5.9.1.
- 5.9.5.2. Turn on the power of all equipments.
- 5.9.5.3.Let the EUT work in test mode(1) and measure it.

5.9.6. Test Procedure

5.9.6.1. Set up the EUT, CDN and test generators as shown on Section 5.9.1.

5.9.6.2. Let the EUT work in test mode and measure it.

5.9.6.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

5.9.6.4. The disturbance signal described below is injected to EUT through CDN. 5.9.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.

5.9.6.6. The frequency range is swept from 150kHz to 10MHz using 3V signal level,10MHz to 30MHz using 3V to 1V signal level,30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave. 5.9.6.7. The rate of sweep shall not exceed 1.5*10-3decades/s. where the frequency is swept incrementally; the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

5.9.6.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

5.9.7. Test Results

PASS.

5.10. MAGNETIC FIELD SUSCEPTIBILITY TEST

5.10.1. Block Diagram of Test Setup

5.10.2. Test Standard

EN 55035:2017+A11: 2020 (EN 61000-4-8: 2010, Severity Level: Level 1, 1A/m)

5.10.3. Severity Levels and Performance Criterion

Level	Field Strength (A/m)	
1	1	
2	3	
3	10	
4	30	
5	100	
Х	Special	

5.10.3.2. Performance Criterion Performance Criterion: A

5.10.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.10.1.

5.10.5. Test Procedure

EUT is placed on an insulating support of 0.1m high above a table of 0.8m high. There is a minimum 1m*1m ground metallic plane put on this table. EUT is put in the center of the magnetic coil then two orientations of the magnetic coil, horizontal and vertical, shall be rotated in order to expose the EUT to the difference polarization magnetic field. Record any performance degradation of the EUT during the test and judge the test result according to performance criterion.

5.10.6. Test Results

PASS.

5.11. VOLTAGE DIPS AND INTERRUPTIONS TEST

5.11.1. Block Diagram of Test Setup

5.11.2. Test Standard

EN 55035:2017+A11: 2020 (EN IEC 61000-4-11:2020+AC: 2020) **5.11.3. Severity Levels and Performance Criterion**

5.11.3.1. Severity level

Test Level		
Voltage Reduction %U _T	Voltage Dips %U⊤	Duration (in Period)
100	0	0.5
100	0	1
30	70	5
Voltage Reduction %U _T	Voltage Dips %U⊤	Duration (in Period)
100	0	250

5.11.3.2. Performance Criterion Performance Criterion: B&C

5.11.4. EUT Configuration on Test

The configuration of EUT is listed in Section 5.11.1.

5.11.5. Operating Condition of EUT

- 5.11.5.1. Setup the EUT as shown in Section 5.11.1.
- 5.11.5.2. Turn on the power of all equipments.

5.11.5.3. Let the EUT work in test mode (1) and measure it.

5.11.6. Test Procedure

5.11.6.1. Set up the EUT and test generator as shown on Section 5.11.1.

5.11.6.2. The interruptions are introduced at selected phase angles with specified duration.

5.11.6.3. Record any degradation of performance.

5.11.7. Test Results

PASS.

Annex A

(Test photograph) A.1 Test Setup Photo of Power Line Conducted Measurement

A.2 Test Setup Photo of Radiated Measurement (30MHz~1GHz)

A.3 Test Setup Photo of Harmonic & Flicker Measurement

A.4 Test Setup Photo of Electrostatic Discharge Test

A.5 Photo of Electrical Fast Transient/Burst Test & Surge Immunity Test

A.6 Test Setup Photo of Injected Currents Susceptibility Test

A.7 Test Setup Photo of Magnetic Field Immunity Test

A.8 Test Setup Photo of Voltage Dips and Interruptions Test

ANNEX B

(Emission and Immunity test results)

B.1 POWER LINE CONDUCTED EMISSION MEASUREMENT

Environmental Conditions:	22.7°C, 53.7% RH
Test Voltage:	AC 230V,50Hz
Test Model:	RGB20X-PTZ-WH
Test Mode:	Working
Test Engineer:	HUBERT
Pol:	Line
Note	
	- -

Detailed results are shown below

Scan code to check authenticity

V				F	Page 36 of	52			Г	tepon	INO.: LO	29402	2022
Environme	ental Conditi	ions:	22.7	″℃ , 53.7%	RH								
Fest Voltag	ge:		AC 2	230V,50Hz	Z								
est Mode):		RGE	320X-PTZ-	-WH								
Fest Mode			Wor										
Fest Engin				BERT									
			Neut										
			Neu	แล									
Note	·· · ·	l											
Detailed re	esults are sh	10wn be	OW										
80.0 dBuV	/												
								Τ]
70							+	+	$\left \right $	+			1
60							EN55	6032	Class	B Cond	luction(QP)		-
50 1							EN 550	32 C	as: I	3 Condu	iction(AVG	11	
Tim	3	7									J.	Ĩ.]
40	"NVM	1. Area				*				+		Mi,	1
30	M. A L		AND A		Marthanna	10 miles	mm	-	7544	mont	cheffer .		
20	- Mrw	W. WW	Δ	WW	VVV	mon	m	****	m	mun	· • المالي		peak
											In.		
10							+	$^{+}$		+			AVG
0	+ + + +					+ $+$ $+$ $+$	+	+	\vdash	+			-
-10	+		\square		_	+	\perp	\perp	\square	<u> </u>			4
-20													
0.150		0.500	0.800	0	(MHz)	5.0	000	_				3	30.000
No. Frequency R		Readin	ading Correct		Result	Lim		Mai	rgin	Remark			
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBu	-		(d	B)			
1	0.1590	29.35		19.76	49.11	65.52		-16.41			QP		
2	0.1590	17.31		19.76	37.07	55.52		-18.45		AVG			
3	0.2311	25.17		19.75	44.92		62.41		-17.49		QP		
4	0.2311	12.90		19.75	32.65	52.41		-19.76		AVG			
5	0.4066	23.13 14.77		19.76 19.76	42.89 34.53		57.72		-14.83 -13.19		QP AVG		
7	0.5191	20.17		19.70	39.94		47.72 56.00		-13.19		AVG QP		
8	0.5191	10.73		19.77	30.50	46.00		-15.50		AVG			
9	3.4351	17.51		19.87	37.38	56.00		-18.62		QP			
		7.33		19.87	27.20	_	46.00			.80	AVG		
10	5.4551	/.33		19.07		60.00					QP		
10	3.4351 21.8131	28.79		20.69	49.48		0	\top	-10	.52		QP	

B.2 Radiated Disturbance Test Results (30MHz to 1000MHz)

22.98

25.24

24.58

24.05

22.09

Note: 1. All readings are Quasi-peak values.

0.35

0.70

0.91

0.95

1.61

2. Measured= Reading + Antenna Factor + Cable Loss

13.47

9.07

11.33

19.37

3. The emission that are 20db below the official limit are not reported

10.11

36.80

36.05

34.56

36.33

43.07

40.00

40.00

40.00

40.00

47.00

-3.20

-3.95

-5.44

-3.67

-3.93

QP

QP

QP

QP

QP

Environmer	ntal Cono	ditions:	22.3℃, 53	.6% RH				
Test Voltag	e:		AC 230V,5	50Hz				
Test Model	:		RGB20X-PTZ-WH					
Test Mode:		,	Working					
Test Engine	eer:		Terence Ta	ang				
Pol:		,	Vertical					
Note								
Detailed res	sults are	shown belo	wc					
80	Level (dBu	IV/m)						
00								
60.0								
								EN 55032B
40.0	- 1							6
40.0	Å	WM MAM.	14	1 4	Man M	IN MA	UNIN.	1. 14 then the
	A. MAR	. V. V	y under	MM	" MAN MAN	March Left	M NH MAN	MAN
20.0	C WPri		¥	V	Cost Provide	Carlos de 1		- 198 (199 (19))))))))))
	30	50	100	Frequen	200 cy (MHz)		500	1000
	Freq	Reading	CabLos		Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	41.57	22.83	0.50	13.57	36.90	40.00	-3.10	QP
	3.2.2.2.2.2	22122	1001100		020702	2022-202		

2

3

4

5

6

46.34

122.40

171.39

222.95

744.87

B.3 HARMONIC CURRENT EMISSION MEASUREMENT

N/A

Because the power of EUT is less than 75W, according to standard EN 61000-3-2, harmonic current unnecessary to test.

B.4 VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

Test Model		RGB20X-PT	Z-WH	Test Engineer	HUBERT
Test Voltage		AC 230V/50	Hz		
Overall Result: PASS	Note: Meas	s: surement method ·	- Voltage		
		Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit		1.000	3.300	4.000	500
Reading 1		0.089	0.006	0.114	0

1001 ×

B.5 ELECTROSTATIC DISCHARGE IMMUNITY TEST

El	Electrostatic Discharge Test Results					
Standard	□ IEC 610	00-4-2 5	Z EN 61000-	4-2		
Applicant	Xiamen RG	Blink Scien	ce & Techno	ology Co., L	td.	
EUT	PTZ Came	ra		Tempera	ture	23.8 ℃
M/N	RGB20X-P	TZ-WH		Humidity	,	53.2%
Criterion	В			Pressure		1021mbar
Test Mode	Working			Test Eng		HUBERT
	Troning	Ai	r Discharge			HODEIG
		Test Levels		, 	Res	sults
Test Points	± 2kV	± 4kV	± 8kV	Passed	Fail	Performance Criterion
Front	\square	\boxtimes				A B
Back				\square		A B
Left						□A ⊠B
Right						
Тор					<u> </u>	A B
Bottom	\square			\square		A B
	I		act Dischar	ge		
TARIA		Test Levels		Results		
Test Points	± 2 kV		±4 kV	Passed	Fail	Performance Criterion
Front			\square			
Back						
Left			$\overline{\boxtimes}$			
Right			\boxtimes	\square		□A ⊠B
Тор			\boxtimes	\square		□A ⊠B
Bottom	\square		\boxtimes	\square		□A ⊠B
	Disc	harge To H	orizontal Co	oupling Pla	ane	
		Test Levels			Res	sults
Side of EUT	± 2 kV		± 4 kV	Passed	Fail	Performance Criterion
Front			\boxtimes			□A ⊠B
Back			\boxtimes	\square		□A ⊠B
Left			\boxtimes	\square		□A ⊠B
Right			\boxtimes	\square		□A ⊠B
	Dis	charge To	Vertical Co	upling Plar	ne	
		Test Levels			Res	sults
Side of EUT	± 2 kV		± 4 kV	Passed	Fail	Performance Criterion
Front			\boxtimes	\square		□A ⊠B
Back			\square			□A ⊠B
Left						
Right			\boxtimes			□A ⊠B

B.6 RF FIELD STRENGTH SUSCEPTIBILITY TEST

RF Field Strength Susceptibility Test Results				
Standard	□ IEC 61000-4-3 ☑ EN 61000-4-3			
Applicant	Xiamen RGBlink Science & Techno	ology Co., Ltd.		
EUT	PTZ Camera	Temperature	25.2℃	
M/N	RGB20X-PTZ-WH	Humidity	52.5%	
Field Strength	3 V/m	Criterion	A	
Test Mode	Working	Test Engineer	HUBERT	
Test Frequency	80MHz to 1000MHz (swept test) 1800MHz, 2600MHz, 3500MHz, 5000MHz (spot test)			
Modulation	□None □ Pulse	☑AM 1KHz 80%)	
Steps	1%			

	Horizontal	Vertical
Front	PASS	PASS
Right	PASS	PASS
Rear	PASS	PASS
Left	PASS	PASS

Note:

B.7 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

Electrical Fast Transient/Burst Test Results						
Standard	□ IEC 61000-4-4 ☑ EN 61000	□ IEC 61000-4-4 ☑ EN 61000-4-4				
Applicant	Xiamen RGBlink Science & Technology Co., Ltd.					
EUT	PTZ Camera	Temperature	23.7 ℃			
M/N	RGB20X-PTZ-WH	Humidity	52.8%			
Test Mode	Working Criterion B					
Test Engineer	HUBERT					

Line	Test Voltage	Result (+)	Result (-)
L	1KV	PASS	PASS
Ν	1KV	PASS	PASS
PE			
L-N			
L-PE			
N-PE			
L-N-PE			(
Signal Line			N. N
I/O Cable			
Note:			

B.8 SURGE IMMUNITY TEST

Surge Immunity Test Result					
Standard	□ IEC 61000-4-5 ☑ EN 61000-4-5				
Applicant	Xiamen RGBlink Science & Technology Co., Ltd.				
EUT	PTZ Camera Temperature 23.6°C				
M/N	RGB20X-PTZ-WHHumidity53.6%				
Test Mode	Working Criterion B				
Test Engineer	HUBERT				

Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
L-N	+	+90°, -270°	5	1.0	PASS
L-IN	-	+90°, -270°	5	1.0	PASS
L-PE					
N-PE					
Signal Line					
Note					

B.9 INJECTED CURRENTS SUSCEPTIBILITY TEST

Injected Currents Susceptibility Test Results					
Standard	□ IEC 61000-4-6 ☑ EN 61000-4-6				
Applicant	Xiamen RGBlink Science & Technology Co., Ltd.				
EUT	PTZ Camera	Temperature	23.3 ℃		
M/N	RGB20X-PTZ-WH	Humidity	51.3%		
Test Mode	Working	Criterion	А		
Test Engineer	HUBERT				

Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Criterion	Result
0.15 ~ 10		3V		
10 ~ 30	AC Mains	3V ~ 1V	А	PASS
30 ~ 80		1V		
Note:				

B.10 MAGNETIC FIELD SUSCEPTIBILITY TEST

Magnetic Field Immunity Test Result					
Standard	□ IEC 61000-4-8 ☑ EN 61000-4-8	}			
Applicant	Xiamen RGBlink Science & Technology Co., Ltd.				
EUT	PTZ Camera	Temperature	25.1 ℃		
M/N	RGB20X-PTZ-WH	Humidity	52.3%		
Test Mode	Working	Criterion	A		
Test Engineer	HUBERT				

Test Level (A/M)	Testing Duration	Coil Orientation	Criterion	Result
1	5 mins	Х	А	PASS
1	5 mins	Y	A	PASS
1	5 mins	Z	A	PASS

Note:

1001 ×

B.11 VOLTAGE DIPS AND INTERRUPTIONS TEST

Voltage Dips And Interruptions Test Results					
Standard	□ IEC 61000-4-11				
Applicant	Xiamen RGBlink Science & Technology Co., Ltd.				
EUT	PTZ Camera	Temperature	26.3 ℃		
M/N	RGB20X-PTZ-WH	Humidity	51.9%		
Test Mode	Working	Criterion	B&C		
Test Engineer	HUBERT				

Test Level % U⊤	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Criterion	Result
0	100	0.5P	В	PASS
70	30	25P	С	PASS
0	100	250P	С	PASS

Note:

ANNEX C

(External and internal photos of the EUT)

Fig. 1

Fig. 2

Fig. 3

Fig. 5

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Fig. 7

ORY

Fig. 9

